

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
1

A Holistic Approach to Embedded Systems Development

Thomas A. Bullinger
President
ArchSynergy, Ltd.
Victor, NY 14564

Sandeep Mitra
Associate Professor

SUNY Brockport
Brockport, NY 14420

Abstract

The Software Engineering Effectiveness Model (SEEM™), was well received at the 2003
ESC(W) Conference. Based on feedback received, this paper reviews the latest status of
SEEM, including updates to key features and introduces the latest enhancements. These
enhancements include Concept Selection and the Learning-Principle-Concept (LPC)
Loop. This paper and seminar follow a case study from start to finish providing a survey
of practical techniques for the application of SEEM to an embedded system product.

Introduction
 Rather than provide another dry, academic tome of information consistent with our
paper as presented last year, we decided to try a different approach. The following
paragraphs are extracted from the journal of a fictional character engaged in developing a
fictional product. As the story unfolds, the elements and activities of a SEEM project
become clear. Further, the benefits of SEEM are placed in suitable context providing for
a more focused understanding of the material. Finally, we hope this is a far easier paper
to read, and is therefore more memorable. Thanks for indulging our creative spirit!

Day 1
 I was sitting at my desk this morning reviewing the results of our latest project. Once
again, the Standish Group [1] study was well represented. Our project was late, over
budget, and still does not meet the needs of the client who is actually going to pay for it.
The bug reports continue to flood in to our help desk, and the developers are working 50
to 60 hours a week. Despite all the hours invested, the number of bugs appears to be
increasing. I don’t know how we can continue to support the current project and start
work on the next one in the pipeline. I can’t help thinking that there must be a better way.

Day 2
 My boss, Sue, called me on the carpet after lunch, demanding to know why progress
was so slow. I explained about the vague requirements from the customer. I discussed the
immature technology that we applied. I told her the staff skill set just wasn’t up to the
task. I complained about the crappy tools that don’t meet the expectations set by their
vendors. I vilified the customer, who keeps changing their mind about the features we did
implement, saying we don’t understand their problem so our solution doesn’t solve it for
them.

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
2

 My boss, being the great person that she is, asked if there was a better way to develop
software for embedded systems. She explained that another product development activity
was about to kick off for a major client. Poor though the performance of my project was,
it was still the best results the company had seen thus far for a software project. She tells
me that I have great potential as a manager, and that she knows I have a better vision for
developing software. Humbled beyond words, I could only agree.
 She promoted my best developer to take over my existing project, and said I could have
two of my current people, and hire more from the outside as needed.
 Then she explained that I could make use of any process or methods I wished, but
another project with the same results as the current project would mean the end of my
career at that company, and at any other company where she had friends. Failure was not
an option. Her grin did nothing to soften the words.

Day 3
 Contemplating my new assignment, I remembered one of the new hires brought in from
RIT1. I remember these hires complaining about our lack of process, saying they had a far
better experience developing software using the SEEM methodology. He said we were in
the software dark ages, and had the completely wrong philosophy for developing
software. I was irritated at the time, but thinking back I was more hurt by the truth of the
statement than anything else. Out of the mouths of babes…
 I called Paul into my office this afternoon, and asked about SEEM. We talked for most
of the day, exploring the various aspects of SEEM and whether it would apply to the next
project or not. Paul informed me that SEEM is primarily focused on figuring out what the
problem is, rather than focused on a particular solution. Once the problem is well
understood, obtaining the correct solution is far easier. This has the additional benefit of
ensuring the customer is well represented, and their real-world problem addressed and
solved. Furthermore, he went on, SEEM addresses the needs of all the other stakeholders
as well, ensuring that the entire project is balanced to meet the needs of all interested
parties.
 Paul explained the SEEM philosophy of Triaxial Architecture. SEEM suggests that
involving all the elements of a development enterprise in the project yields a better
solution. Traditionally, the technology axis (engineers!) drive a solution with only limited
input from the business axis (management!) and the market axis (marketing, sales and the
customer!) By considering the needs of all three, and involving all three in the project
wherever possible, the project gains better focus and improved productivity. I asked how
SEEM manages to get the three groups, which typically only meet at parties, to talk
together. Paul explained that SEEM creates a project at multiple levels of abstraction, and
that the higher layers are suitable for non-techies to read and understand. By providing
simple tools to communicate thoughts and ideas, it is easier to discuss the issues with all
the stakeholders. Paul asked if I ever reviewed a DFD2 with a customer. We had a good
laugh over that one!

1 Rochester Institute of Technology
2 Data Flow Diagram

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
3

 I asked Paul if we had to invest in pricey CASE tools, and deal with their proprietary
interfaces, to make the best use of SEEM. He explained that the SEEM philosophy, as
drawn from eXtreme Programming [2], is to keep things as simple as possible. To that
end, only well-known tools such as Microsoft Visio, Word and Excel were used to create
the documentation artifacts3. He did say that the development environment is still needed
for writing, debugging and executing code, but we already had suitable (and free!)
toolsets for that.
 I told Paul that SEEM sounded like a great methodology, but wondered where it came
from. I’d heard of eXtreme Programming (XP) and Rational Unified Process (RUP), but
not SEEM. He explained that SEEM was essentially an Agile Methodology [3], built on
the best practices of both XP and RUP, and incorporating their respective philosophies
into it. The developers of SEEM have been practitioners for years and years, and know
how to get projects out the door on time. SEEM has been developed to such a fine
degree, that they have a “recipe” for developing software, something no other
methodology has ever provided. SEEM claims that if you follow their recipe, and apply
their metrics and heuristics properly, you cannot fail. To support this claim, Paul told me
that to date, no SEEM-based project has ever been delivered late. Furthermore, no SEEM
project has ever failed to meet the needs of all the stakeholders, and especially the needs
of the customers that pay for it.
 I asked if SEEM applied to embedded systems. He told me that SEEM philosophy
actually applies to any engineering discipline, but was currently geared toward software.
He assured me it would work great for our application.
 I told Paul I was willing to give SEEM a try, and asked how to get started. He
suggested we bring over Tim, a fellow student of his that took the same SEEM course he
did. He also suggested we bring in a SEEM consultant to help them get started. Once
geared up, we could hire more people with exactly the right skill sets.

Day 5
 Tom, our SEEM consultant joined us today. We licensed the SEEM cookbook from
ArchSynergy, and went through an introductory session on SEEM. The introductory
session covered a lot of ground mostly on the philosophy of SEEM. Here are some of the
things I learned:

• SEEM is based on XP, RUP and a few other methods, but has refined the
techniques and philosophy to make them actionable.

• SEEM considers all aspects of the development enterprise, and in particular the
business, market and technical communities.

• SEEM is focused on understanding the problem to be solved, and ensuring that
the eventual solution is traceable in full back to the original problem.

• SEEM creates models geared toward communicating with people, not computers.
• SEEM discovers a metaphor for the project, and leverages the metaphor to

facilitate communication.

3 An artifact is any document, diagram or file produced during the course of a project.

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
4

• SEEM recognizes that patterns occur at multiple layers of abstraction, and
leverages the patterns from one layer to the next.

• SEEM renders the actual implementation of the code trivial, as all the “hard” stuff
is figured out in advance.

 The team received this very well, as they already had exposure to the concepts. My
boss, who joined us for the overview session, really liked the idea of focusing on the
problem to be solved. She also liked the concept of full traceability, which ensures the
right code is implemented at the right time.

Day 8
 Paul, Tim and I have spent the past few days working out the business context diagram
and stakeholder profiles. Working from a product concept provided by my boss, we
touched base with many of the stakeholders to determine what they really wanted in their
new application. Since we aren’t allowed to talk to the actual customers (something about
us being geeks…), we spent time with the marketing and sales folks. I realized for the
first time that a lot of different people are involved in creating a software application and
they all have their own requirements. I thought only the customer drove requirements!
It’s really nice that SEEM provides a tool for finding stakeholders and capturing their
issues.
 We spent a bit of time with the hardware folks as well, trying to figure out how to
understand and capture their thoughts and ideas. We didn’t understand all of it, but we
captured everything and hoped we could make sense of it later on.
 We also gathered information on how the product will work when completed. At this
point, everyone still has different ideas about what it should and should not do, and many
of them are contradictory. We didn’t pass judgment - we just gathered the information.

Day 9
 We spent quite some time today figuring out the right metaphor for our product. This
was another first for me, as I had never considered a metaphor as a communication tool
for developing software. We talked through a variety of possibilities, and in the end
settled on a metaphor that fits reasonably well.
 The benefits of using a metaphor were immediately apparent. Suddenly we had a
vocabulary that applied to our problem, and we were able to accelerate our
communication just by referring to the metaphor. We were also able to intuit more
requirements from the metaphor. In our case, the metaphor is well known, and a mature
model. So drawing requirements made sense as we could build on the expertise already
applied to the metaphor. Even though it wasn’t a one-to-one correspondence, the
translation from the metaphor domain to our problem domain was easy.
 Tom tells us that metaphors will apply in different ways throughout the process,
showing up in the form of a similar problem, or the form of a problem-domain pattern, or
even as a design pattern or coding idiom. If true, it’ll be interesting to see these develop.

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
5

Day 10
 We met with the senior management team today, and presented our results thus far. We
needed to meet with them to gather information on the business aspects of the product
development. Prompted by the SEEM templates, we asked them a large variety of
questions, some of which took them off-guard. For example, when we asked them the
mission of the business, they were astonished that we didn’t know! A secretary was
called, and he quickly provided us with a corporate overview that described the mission
and vision of the business, as well as a set of principles that guide the decision making
process. We suspect this will be immensely helpful later on.
 We also talked about the roadmap for the product, even though we have only limited
requirements. Rather than attempt to produce the be-all end-all product of all time, we put
together a strategy for rolling out the features over time. By starting with the simplest
possible product, we can deliver to the customer early, and get feedback from the use of
the product. This will make it easier to evolve the product over time and ensures we
really understand the problem we’re solving. Although management wasn’t entirely
comfortable releasing a minimal product to begin with, they really liked the aggressive
delivery schedule allowed by this strategy.
 Along with the roadmap, we discussed a high- level schedule, or product timeline. As
we knew more people were needed, we included them in the resource-planning schedule.
We also described each of the project phases as suggested by SEEM, and discussed how
they fit into the product release process already in place. Senior management, seeing
things presented that they could relate to, provided some excellent suggestions that we
incorporated into the development process.
 At the end of the meeting, we all agreed that this was the most productive management
meeting any of us had ever been to. This was the first of many testaments to SEEM’s
ability to focus activities on the right issues.

Day 16
 We completed the first cut of the User Story diagrams today. This was my first
experience modeling with UML’s use case notation, and proved to be very effective at
capturing the behavioral aspects of an application. I’ve always worked with textual
requirements, but they tend to be ambiguous. We’ve all seen the mountains of verbose
statements saying what shall be, what should be, and what may be, but I’ve always found
them to be a pain. How do you translate those speculative words into software? How do
you resolve the cont radictions embedded in your interpretation? And worst of all, how do
you determine if you have indeed met the “requirements”?
 SEEM suggests the details of a particular user story to be described in text. However,
SEEM provides a set of templates for describing user stories, in which the stakeholders
interested in each user story identifies the preconditions, the flow of events required to
achieve the results of the user story, and the measurable results. By focusing on the
structure of the template, and working within the context of the user story, the results
were less ambiguous. SEEM also uses UML notation to depict the relationship between
the individual User Stories (which story depends on which other story, which one is a
generalization of the other, and so on).

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
6

 The user stories introduced by XP, and honed by SEEM are a nice way of capturing the
reality of an application. They transform the ambiguity of text into the reality of a
problem to be solved. Furthermore, the user stories are easier to categorize and review,
and the stakeholders actually understand them!

This was also our first chance to apply SEEM in-process metrics to our work products.
For example, our first diagram had 17 different user stories represented in the top-most
diagram. This violated the SEEM 7+/- 24 rule for diagrams, but we weren’t sure how to
reduce the number.
 Tom demonstrated how abstractive decomposition could be used to build a hierarchy of
user stories while still presenting the appropriate information. While we had heard about
abstractive decomposition in the introductory session, I must admit that I didn’t
understand it. Now seeing it applied, it makes perfect sense. It’s just a matter of
combining like user stories together and giving the abstract concept the right name. As
long as the user stories grouped beneath the abstract user story are consistent with the
name, then the abstraction is appropriate. Tom again explained the difference between
abstractive decomposition and functional decomposition, and why abstractive
decomposition was a better option. I think I’ll remember it this time.
 While working out the behavioral aspects of the system, we ran into many requirements
that were non-functional. For example, the customer wants this particular product to run
on a PowerPC chip. The non-functional requirements were captured in a separate text
document.

Day 18
 Today we received a lecture on testing. Historically, we create our test cases last, and
frankly, we were never very thorough about it. We just ran our application as if we were
a user, and noted things that didn’t work. Of course, the users discovered far more bugs
than we did, a constant source of embarrassment for us.
 SEEM has adopted the XP philosophy on testing, suggesting that we consider test cases
even before we start implementation. SEEM recommends two levels of testing: Customer
Acceptance Testing, and Engineering Testing. Since Customer Acceptance testing is
based on the user stories, this was the appropriate time to create them. I guess tomorrow
we’ll spend some time considering the user stories and how to test them in the final
application. We’ll deal with the Engineering Tests later on when the design is underway.

Day 20
 We spent some time today talking about mapping user stories into sequence diagrams.
Up to this point, we kept trying to sneak solution concepts into the analysis. Finally, Tim
pointed out that the analysis should proceed as if we were designing a system for a bunch
of people with pencil and paper. He convinced us that if our analysis could be modeled
with this simple concept in mind, then we could apply any technology to our actual
solution.

4 Studies have shown that the limit of human cognition is roughly 7 items, plus or minus 2.

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
7

 At first, it seemed silly to examine everything in this light, especially considering the
fact that we’re developing an embedded, real-time control system. Eventually, we
realized that the task didn’t have to be practical for people with pencil and paper, merely
possible. Once we rationalized that thought process, it became second nature.

Day 23
 We’re mid-way though the sequence diagrams now. I was concerned that the functional
nature of a user story wouldn’t translate into an object-oriented system. I was pleasantly
surprised when Tom indicated we were right on track. The trick to transcribing the user
stories into an object model is through the correct identification of the objects for the
sequence diagrams. Thinking back to my early OO days, I remembered rooting out
objects by picking nouns from the problem statement and problem domain. I was
concerned about some choices, but as long as we stuck to the nouns, and could rationally
justify our selection, they are OK.
 Again, SEEM provides guidance in this area by providing some qualitative metrics that
can be applied. For example, Tom explained the Darwin test to us. The Darwin test is
simply the concept of “survival of the fittest.” If an object choice cannot be successfully
moved into a different environment, it’s probably not a good candidate for an object.
 At one point, we had a serial interface object that understood a particular protocol for
communicating on a serial port. After considering the Darwin test, we realized the object
we chose was specific to the details of this particular protocol, and therefore failed the
test. We re-factored the object into a protocol object, and a serial port object. In this way,
we could reuse the serial port in any place requiring a serial port. We could also reuse the
protocol in any other application that required similar semantics in the interface. By
breaking the object into more natural entities, we increased the cohesion5 of each object,
and reduced the coupling6 to other objects.

Day 25
 We continue to make incredible progress on the project. The intellectual tools provided
by SEEM have focused the team in a manner I’ve not experienced before. Now that
we’re most of the way through the analysis, we’ve seen all the UML diagrams and
templates. The breadth of information that can be captured is sufficient for everything
we’ve learned about the project to date. On previous projects, much of the intellectual
property was locked in the heads of the people on the project. The information in this
form was hard to come by, and nearly impossible to understand. By capturing everything
on “paper”, we’ve all gained a better understanding of the problem. By having something
to point at, wave your arms around, and mark-up, the discussions that used to take hours
to gain consensus, now take minutes.
 At the start, I was seriously concerned that the amount of paperwork would be
overwhelming. That I’d be spending the rest of my career drawing cartoons in Visio or
some other tool. SEEM has streamlined the process to the point where the documentation
becomes an effective means of communication. We’re still getting used to having

5 The “oneness” of an object, high cohesion yields good architecture.
6 The reliance of one object on another to accomplish a specific task, low cohesion yields good architecture.

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
8

everything captured, and it takes a minute or two to find information, but having it
captured allows us to move forward at an accelerated pace.

Day 26
 I forgot to mention yesterday that we’ve started to gain an appreciation for the
continuity and traceability provided by SEEM. Since we wrapped up our first
approximation of the user stories, we’ve been using them to drive the rest of the
development process. Even our project plan is based on the user stories, as they provide
an excellent basis for planning, estimating and tracking progress.
 For each user story, we’ve identified the entities (nouns) in the problem domain and
mapped them into sequence diagrams that accomplish the work of the user story. Then
we examine the sequence diagram, and extract the roles and responsibilities for various
entities into ERC Cards7. Any static relationships that we find between entities we also
capture on entity-relationship diagrams. By the time we’re done with all the user stories,
all the entity’s roles and responsibilities are flushed out and ready for the next step. Of
course, it’s not as linear as it sounds, and we keep going back to change our previous
work, but I’ll write more about that later.

Day 32
 We’ve been reviewing the artifacts with the stakeholders, and they have the nerve to
suggest we missed a few of their finer points. I feel comfortable joking about this as
changes are really not a problem. In fact, by reflecting some of our learning back at them,
we helped change their concept of the problem, and the eventual solution.
 One of the interesting aspects of software development is that every project you
undertake has never been done before: Everything is new. The consequence is that you
don’t know what you don’t know! It sounds odd, but it’s true. The only way to figure out
a right way to accomplish a goal is to do it. Then decide if it was the best way or not, and
re-do it if necessary.
 I remember hearing in college that at least one expert recommended that you throw the
first three versions away. While this is silly in practice, I understand the sentiment. At
each step of the process, we realize where we went wrong only after we were done.
Fortunately, SEEM’s LPC8 Loop takes this into account and actually leverages this fact
of human nature to drive iteration. Everything we learned by doing, we captured in the
journal either as a learning, or as an action item to go back and fix things. In some cases,
we decided to move forward with a sub-optimal solution. After all, what we have works -
it just isn’t ideal. We captured that fact in the journal and will fix it when we revisit for
the next iteration. In other cases, we decided to address the situation immediately, so we
exercised the SEEM Systemic Iteration loop. We’ll be trying that out tomorrow.

7 Entity-Relationship-Collaboration Cards.
8 Learning-Principle -Concept

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
9

Day 34
 We’ve gone through our first exercise of systemic iteration. This was a very interesting
process I’ve not used before. To start, we updated the artifact dependency graph we
started on the second day Tom was here. He told us we’d need this! The dependency
graph simply tracks the relationship between each of the artifacts created along the way.
We had seen how to construct this graph from the initial set of artifacts created. We
started with a product concept document provided by my boss, so that was on the far left
of the graph. Each artifact we created thereafter was added to the right, and a line was
drawn to represent the ancestry of each artifact. For example, since we used the product
concept to generate user stories, there was a line from the product concept to the user
story artifact. Similarly, we used our discussions with stakeholders for the user stories, so
we linked the meeting minutes, or actual recordings of the conversations into the user
stories. Later on, we had seen how the flow of events in the user stories drove the
creation of the sequence diagrams, from which we had constructed the ERC cards. All of
these showed up as dependencies in the graph. As more artifacts were created, this graph
was be augmented. Tom talked to us about traversing these dependencies to manage
change, but the elegance was lost on me at the time. Some of my colleagues, in fact,
commented about wasting time to create a neat graph to illustrate dependencies that were
obvious (I overheard someone remark that we should have taken degrees in graphic art
rather than computer science). Now I understand the need for this graph, and appreciate
the simplicity of the concept.
 After we updated the dependency graph, we took a look at the changes we negotiated
with the customer. Three of the users stories changed slightly, there was one user story
added (discovered via the metaphor!) and the customer requested that we use a particular
technology for our solution. For each change, we started with the dependency graph to
assess the impact of the change. Starting with the artifact directly affected, we walked
through the dependencies to determine if the other artifacts would be affected. For
example, we had to add a new user story, which directly affects the user story artifact.
Since the product proposal was used to create the user stories, we read though that to see
if anything had to change. Since the new user story was consistent with the existing
concept, no change was necessary. Going in the other direction, we know that the user
stories were used to create sequence diagrams to assign the roles and responsibilities to
objects in the system. Since we added a new user story, we had to add a new sequence
diagram, changing that artifact.
 Since we changed the sequence diagram, now we had to examine the dependencies to
that artifact. Going back to the user stories, we knew we had already covered the change
there, although this won’t always be true. In the other direction, we know that the new
sequence diagram added a few responsibilities to the existing classes. Therefore, the ERC
cards (which are dependant on the sequence diagrams) had to change. At this point in the
development process, we don’t have anything past the ERC cards, so this was the end of
the change effect. The other changes were handled in a similar manner.
 Since the dependency graph portrayed the potential effects of the changes, and provided
a means to manage the change, we were able to easily determine the effects of a change,
and understand the consequence to the schedule and resources. Tom pointed out an
interesting side effect of this graph. He told us that the number of perturbations induced
by a change is a direct reflection of the quality of the system architecture. He explained

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
10

that the dependency graph represents a perspective of the system architecture, and that
changes that affect too many artifacts may be indicative of architecture problems. As he’s
been mentoring us through the process, this wasn’t an issue for us.

Day 39
 I had a project review with Sue, my boss, today. Naturally, she asked where all the code
was, assuming we’d have a lot completed since we’ve been working as a team for so
long. I laughed self-consciously, and explained that we just now understand the problem.
 I showed her all the artifacts we created, and walked her through the problem analysis.
She has seen many of the artifacts in different review sessions, but this was her first
exposure to the completed analysis. Starting with the user stories, and ending with the
ERC cards, we reviewed every aspect of the problem. As she is somewhat familiar with
the problem space, she had no trouble understanding my presentation. She was astonished
at the complexity of the problem that we modeled. Since we captured requirements from
all the stakeholders, there were some interesting implications discovered. All the
conflicting needs were reconciled and presented in our model. After just one hour of
reviewing, she understood more about the problem we were solving than any of us had at
the beginning.
 Sue asked about hardware integration issues. I said that at this point we were still
figuring out the problem, and didn’t yet know how the hardware would figure in. I
explained that hardware was a solution issue, and that would be a major part of the
technology we considered. I also mentioned that we had spent considerable time with the
hardware engineers gathering their requirements, so we felt comfortable that we
understood their needs at a high level.
 She apologized for her skepticism, and then asked how we were doing relative to the
schedule. I explained that it was taking more effort than I expected to figure out the
problem, but we were still slightly ahead of our original schedule (a schedule I thought
was far too optimistic!) As I was leaving her office, she stopped me at the door and said
she was pleased that she didn’t have to fire me. She paused, then finished with a smile:
“at least not yet.”

Day 42
 We’ve started mapping our problem analysis into the solution space. We spent some
time reviewing the analysis with the hardware folks, and they had some interesting ideas
and perspectives on the problem. Together we were able to consider hardware solutions
that didn’t make sense before we understood the problem. The hardware team gave us
tons of input into the concept selection process, and made our jobs significantly easier.
Using SEEM’s concept selection process, we’ve been slowly working through the
available technologies and selecting the right ones for our project. I’ve seen the Pugh
process used in other contexts, but this is the first application I’ve seen for software.
Basically, we list the various features we think are important along the left side of a
matrix. Across the top columns, we list the different technologies we think apply. We
select one technology as a reference, and then rank the relative strengths of the other
choices to the reference. Using plusses and minuses, it quickly becomes obvious which

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
11

technology makes the most sense. In fact, in many cases we didn’t even have to finish the
matrix as the very exercise of creating the matrix made the choice obvious. In other
cases, we’re still debating the finer points of the rankings. I suspect I may need to dictate
a choice or two just to move forward.
 Tom tells us that concept selection can be used anyplace there is a conflict or debate
about a concept. Thinking back to our metaphor discovery meeting, I can now see how
this might have applied.
 To make sure we don’t lose our decision making process, we’ve added the concept
selection matrices to our repository, and to the dependency graph. That way, if we need
to change anything, we’ll be able to tell if any of technology choices need to be
reconsidered.

Day 44
 We reviewed the set of user stories today and selected the ones we want to implement
in our first iteration. Most of our selections represent the essential behavior for the first
release, but we included one that we considered high risk as we’re not sure how we’re
going to do it. Hopefully we’ll figure it out when we get there.
 Based on the selected user stories, their relative complexity and risk, we put together a
final estimate for the first release date. We also have a better feel for the technologies
we’ll be applying, so we submitted a hiring requisition for the other team members.
Interestingly, we requested junior- level people to supplement the team. Since the SEEM
process spells out what needs to be done to a reasonable level of detail, we don’t need
senior staff for the implement. We’ve also discussed the fact that junior- level people are
typically more open to different ways of doing things, and we think they’ll integrate
better with the team.

Day 47
 We got stuck today trying to figure out how to map our problem analysis into the
technologies we’ve selected. We know what technologies to apply, but we’re not sure
how they fit into what we’ve done so far. We met with Tom to discuss the issue, and he
reminded us of the need for traceability. He explained that the solution design phase
includes all the same information as the problem analysis, but adds more detail,
specifically around how to accomplish the responsibilities of the entities.
 We walked through one example where we copied the sequence diagrams from the
analysis into the design directory. Then we chose one diagram from the set, and started
adding solution-domain entities. The flow of information is exactly the same, and even
the problem analysis entities remained (although now they are subsystems or classes!)
We added classes to realize the technology portion of the solution: things like linked lists,
persistent records, and serial interfaces.
 To clarify the linkage between the problem analysis and the solution, Tom suggested
we color code the sequence diagram to illustrate the connection. Reverting back to the
analysis diagram, we selected a transaction from the sequence diagram and colored it
green. Returning to the design diagram, we colored it green to match. By comparing the
two, we could easily see where the design classes were introduced, but we could also see

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
12

where the sequence of events came from in the problem domain. The clarity of
traceability was remarkable and really highlighted the value of understanding the
problem first.
 At this point, I started to understand the process from a higher perspective. It’s really
the same process repeated at different levels of abstraction. Even the diagrams are the
same; it’s just the level of detail that varies. It reminded me of a recursive descent
language parser I wrote for a compiler class in college.

Day 50
 We’re almost ready to write code, but we were reminded to consider the Engineering
Testing before the actual implementation. Following XP philosophy, we created a test
plan for each of the implementation classes based on the CRC cards. This was my first
exposure to writing the test first, and I approached the problem with some trepidation.
After all, how can I write a test for something I haven’t written? As it turns out, writing
the test plan first helps formulate the boundary and error conditions you might encounter,
and ensures you write code correctly the first time. I’ve never considered a test plan as a
development tool, but it certainly works to your benefit if you write them first.

Day 51
 We finally wrote some code today! We set up the compilers and the environment a
while ago, and we’ve prototyped a few things just to be sure the technology was working
as expected. But today we actually completed the first user story!
 We started with the CRC 9 cards created from the sequence diagrams, and used them to
outline the header file for the C++ classes. Then we filled in the bodies of the methods
based on descriptions in the CRC cards and the sequence diagrams. We each took a set of
cards, identified the required methods for our user story, and went to work. Since all the
details were already thought through, writing the code was a no-brainer. Similarly, since
the interfaces and interactions were all defined, when we brought the code together, it just
worked. We even ran our test cases, and all but a few boundary conditions passed. No
surprises, no muss, no fuss. We left work early, and I took the team out for beers. Sue
bought, but I’ll let her know later.

Day 57
 We spent some time today automating the testing process. Since we’re integrating
continuously, and we’re practicing collective ownership, it’s become increasingly
important to run our test suites regularly. Fortunately, since we’re an embedded system
without a user interface, automated testing is much easier.
 We created a script-based test infrastructure that sends messages into our application,
and examines the results. We were then able to write scripts to realize our test cases fairly
quickly. Now, just prior to checking our code into the repository, we can run the test
scripts against the code we’ve modified to ensure it’s correct. The test scripts require

9 Class-Responsibility-Collaboration

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
13

extra effort to maintain, but we’re so far ahead of where I thought we’d be, it won’t affect
our schedule.

Day 63
 We started integration with hardware today. I was expecting a nightmare of
misunderstandings and miscommunication to result in incompatible hardware and
software. To my surprise, everything integrated and worked with only a few minor timing
glitches. The sequence diagrams that detailed the interface between hardware and
software were invaluable in communicating the intent to both hardware and software
engineers. The resulting hardware matched the specs perfectly, and the tests based on the
sequence diagrams ran without a problem. We were pleased to learn that the hardware
folks understood the sequence diagrams without any problem, and they were thrilled to
have a detailed interface they could design to as well. They’ve been hinting that they’re
considering SEEM concepts for some of their processes as well. We recalled from the
first presentation that SEEM is compatible with DFSS10 philosophy for hardware and
manufacturing, so we gave them Tom’s business card.

Day 66
 The first set of user stories is nearly complete. There are some tests yet to run, but the
essence of the first iteration is ready. In hindsight, this is the easiest development effort
I’ve ever participated in. Because we thought through everything up front, the coding
process, and the integration were simple.
 In some ways, I expected the effort to get more difficult as time progressed due to the
interaction between the components of the system. For the first time, we’re practicing
collective ownership, something introduced by XP and promoted by SEEM. Collective
ownership says that anyone can modify anything as needed. The consequence is that the
code evolves much faster, and the quality is vastly improved due to the many eyes
reviewing it. Also, since everyone knows the system well, they don’t reinvent code when
it’s already been developed and tested. Since we have test cases for all the code, making
changes is safe as you can immediately test the results of your changes to ensure you
didn’t break anything. Of course, this doesn’t mean that its open season on the artifacts,
its just that when you notice things aren’t consistent, you can change them. Most changes
need to be handled via systemic iteration, but the little things can just be fixed. For
example, I was reviewing some code that Sandy, one of the new hires wrote. There was a
section of code that I’m sure made sense to her, but it took me awhile to figure out. I
made some simple changes to clarify the code. Fortunately, it was a change that was
confined to the algorithm that implemented a particular method of a class. As such, it did
not change the architecture. Exercising the systemic iteration process, I realized that there
was no need to go and change any other artifact. I went ahead and added a few comments
explaining the algorithm hoping the next person would have an easier time.
 The other thing we’re practicing is constant integration. Since the repository always
contains working code, it’s much easier to test new portions of the system. We still have

10 Design for Six Sigma

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
14

to coordinate user stories to ensure the system evolves together, but that hasn’t been a
problem yet.
 The cool part about constant integration is that we’ve been able to demo the system as
needed without any prior notice. Sue brought her boss down this morning. Apparently
she was bragging about our incredible progress, and her boss wanted to see for herself.
They walked into my office unannounced to see a demo. Fortunately, my portion of the
system was working at the time, so I was able to demo the application completed thus far.
Her boss was quite pleased with the results, and Sue gave me a “thumbs-up” on her way
out.

Day 75
 Well, we demo’ed the program to the primary customer today. We completed and
tested the essential functionality, and put together a formal release. Then we ran the
customer acceptance test based on the selected user stories. Everything checked out fine,
so we took it to the customer for their comments. We were especially pleased with our
results as we delivered the first release 2 months ahead of schedule, and squeezed in 2
extra user stories.
 Naturally, they wanted it right away, so we left them a copy with the preliminary user
documentation created from the user story descriptions. I was pleased that upper
management attended the demo, and was able to see our presentation, and the customer’s
reactions.
 Afterwards, Sue and her boss dragged me aside and congratulated my team and me on
our overwhelming success. This was the first time our company had delivered anything
on time, and the fact that we were early with extra features was totally unexpected. Sue’s
boss had already heard from the sales people who attended, and they were ready to line
up more customers based on what they saw. Everyone was very pleased with the results,
and considered this a turning point for the company.
 Sue had an extra twinkle in her eyes when she handed me a stack of envelopes, each
with a team member’s name noted on the front. I flipped though the stack to mine, and
slit open the envelope while she watched. Mine held a bonus check, as I’m sure did the
others. Glancing at the numbers, I realized I could now afford that new car I’ve been
eyeing.

Day 80
 Sue called me into her office today to debrief the project. I explained that the team was
hard at work on the next iteration, adding in the next set of user stories for the customer.
She asked what it would take to roll out SEEM to the rest of the company. Based on our
success, they’d like to get everyone up to speed so they could be as successful as we are.
We talked awhile about how to get everyone up to speed, and how we could spread the
new expertise across the company. We settled on a starting point for the roll out, and I
headed out the door. As I reached for the knob, she said, “One more thing.” I turned
around, and she slid a new nametag for my cubicle across the desktop. My name was
across the top, the same as my current nametag. But on the bottom was a new title,
Director of Software Development.

Software Engineering Effectiveness Model

Proceedings Embedded Systems Conference (West) San Francisco, March 29-April 1, 2004
15

References

1. The Standish Group International, 2000. The Standish Group, CHAOS Chronicles
2. Kruchten, Philippe. 1999. The Rational Unified Process. Addison-Wesley. ISBN

0-201-60459-0
3. Beck, Kent. 2000. eXtreme Programming eXplained. Addison-Wesley. ISBN 0-

201-61641-6
4. Schneider, Winters. 1998. Applying Use Cases: A Practical Guide. Addison-

Wesley. ISBN 0-2013-0981-5, See chapter 8 for further information.
5. Booch, Grady. 1994. Object Oriented Analysis and Design with Applications. 2nd

Edition. Addison-Wesley. ISBN 0-8053-5340-2. See discussion starting on page
12

6. Cockburn, Alistair. 2002. Agile Software Development. Addison-Wesley. ISBN 0-
201-69969-9

7. Fowler, Scott. 2003. UML Distilled Third Edition – A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley.

8. Bredemeyer, Dana. See http://www.bredemeyer.com.
9. http://www.ArchSynergy.com

